侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
当前位置:

OFweek智能硬件网

CPU/GPU

正文

详解人工智能芯片 CPU/GPU/FPGA有何差异?

导读: 在深度学习的领域里,最重要的是数据和运算。谁的数据更多,谁的运算更快,谁就会占据优势。因此,在处理器的选择上,可以用于通用基础计算且运算速率更快的GPU迅速成为人工智能计算的主流芯片。

深度学习的领域里,最重要的是数据和运算。谁的数据更多,谁的运算更快,谁就会占据优势。因此,在处理器的选择上,可以用于通用基础计算且运算速率更快的GPU迅速成为人工智能计算的主流芯片。可以说,在过去的几年,尤其是2015年以来,人工智能大爆发就是由于英伟达公司的GPU得到广泛应用……

一、人工智能与深度学习

2016年,AlphaGo与李世石九段的围棋对决无疑掀起了全世界对人工智能领域的新一轮关注。在与李世石对战的5个月之前,AlphaGo因击败欧洲围棋冠军樊麾二段,围棋等级分上升至3168分,而当时排名世界第二的李世石是3532分。按照这个等级分数对弈,AlphaGo每盘的胜算只有约11%,而结果是3个月之后它在与李世石对战中以4比1大胜。AlphaGo的学习能力之快,让人惶恐。

1.人工智能:让机器像人一样思考

自AlphaGo之后,“人工智能”成为2016年的热词,但早在1956年,几个计算机科学家就在达特茅斯会议上首次提出了此概念。他们梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器,也就是我们今日所说的“强人工智能”。这个无所不能的机器,它有着我们所有的感知、所有的理性,甚至可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能目前还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类,或者Facebook的人脸识别。这些人工智能技术实现的方法就是“机器学习”。

2.机器学习:使人工智能真实发生

人工智能的核心就是通过不断地机器学习,而让自己变得更加智能。机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。以识别停止标志牌为例:人们需要手工编写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“S-T-O-P”。使用以上这些手工编写的分类器与边缘检测滤波器,人们总算可以开发算法来识别标志牌从哪里开始、到哪里结束,从而感知图像,判断图像是不是一个停止标志牌。

这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到雾霾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么很长一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

1  2  3  4  5  6  7  8  9  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: