技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
当前位置:

OFweek智能硬件网

CPU/GPU

正文

英特尔的CPU+FPGA能否打败谷歌TPU?

导读: 本文是网易智能对英特尔技术专家与科大讯飞深度学习平台研发总监张致江的采访,值得一读。

OFweek智能硬件网讯:近日,英特尔宣布与科大讯飞达成技术合作,共同优化在机器学习深度学习领域的离线训练与在线预测,并在上周举办电博会上进行了展示。本文是网易智能对英特尔技术专家与科大讯飞深度学习平台研发总监张致江的采访,值得一读。

英特尔AI芯片技术布局:CPU+FPGA

据了解,2016年11月,英特尔和讯飞签署了一个为期是三年的人工智能技术合作框架。英特尔与科大讯飞的技术合作涵盖了深度学习的完整流程,包括数据采集,离线训练(Traning),在线预测(Inferencing),采集新数据组,进行新的离线训练。

机器学习/深度学习中最重要的技术是离线训练和在线推理。针对离线训练,英特尔和讯飞主要是针对现在的KNL和即将要发布的KNM来提升讯飞在深度学习平台的性能。科大讯飞深度学习平台研发总监张致江表示,英特尔下一代的处理器KNL和KNM这方面去做这样的事情效果非常好,目前在这个上面做的跟主流的深度学习处理方案水平相差很小,同时下一代的KNL、KNM因为有很大的显存、编程的特性,未来可能考虑用这种方案去做平台建设。张致江称,现在主流的一些加速方案可能会限制整个计算的memory,而KNL、KNM实际上是打破了这样一个限制。

在线推理方面,主要是用英特尔的FPGA技术。张致江称,在线预测传统的方法基本上都是用CPU的方式去做这样的事情,但是随着业务量的增长整个服务器的数量也是随着线性增长的,成本太高。张致江称,我们在用CPU加FPGA的方案去做的时候,一台服务器里面就插了一张FPGA的加速处理器,整个性能是远远超过于两台甚至三台、四台CPU机器的性能,成本也会降低很多。

也就是说,英特尔将人工智能芯片的技术路径分为离线训练与在线推理两方面,针对离线训练会主推至强融核KNL/KNM处理器(KNM尚未上市),特点是针对单精度操作进行了优化,支持自启动,能够独立运行操作系统和应用软件,内置片上内存,直接通过内存控制器从DDR4内存读取数据到处理器缓存,对行业标准的开源深度学习框架进行了优化。在线预测阶段,英特尔主推至强CPU+Arria10FPGA的方案,声称可以实现低延迟高通量在线处理,因为英特尔A10FPGA原生支持并行多通道任务处理,超过1500个单精度浮点计算单元会同片上/本地存储提供稳定的低处理迟延,成本更低。

1  2  下一页>  
责任编辑:Eric
免责声明: 本文仅代表作者个人观点,与 OFweek智能硬件网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: