侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
当前位置:

OFweek智能硬件网

人工智能

正文

2017年,AI创业者要回归商业规律

导读: 随着人工智能行业的发展,我们过多地关注了“人工智能”概念本身,而相对地弱化了创业规律

大家好,我是刘玮玮。

人工智能已经进入了一个高速发展期,巨头们和初创公司都在纷纷布局,传统行业也迎来了重构机遇。

对于创业者而言,随着巨头们搭建的AI生态日渐完善,存储和计算成本大幅下降,AI初创企业的难度也正在逐渐降低。根据资料显示,过去两年新增加人工智能企业数超过了过去10年的总和。

在资本推动行业发展的前提下,一些初创项目出现了估值泡沫,并且从商业规律上来讲,人工智能的全面落地还有很长的路要走。

我认为AI领域的创业者要根据行业痛点深耕本领域,打好基本功,解决实际的商业问题。因此从本周开始,我将会与星河融快一起在每周一与你分享我对人工智能的思考与观点,希望对你有所帮助。

上周五,星河融快邀请了多位人工智能领域的专家、创业者和投资人进行了闭门分享会,星河互联人工智能事业部总经理、合伙人刘玮玮发表了《人工智能创业者应回归商业规律》的演讲,今天我们精选了他给AI创业者们如何应对2017年第一波AI倒闭潮的几个建议,与你一同分享。

以下,供你参考。

2016年的人工智能发展比较迅猛,无论是从标志性的事件、巨头的布局以及投资的数据等,都可以看到发展极其迅猛,但整体还在初期。

blob.png

从50年代起,人工智能就开始发展起来了,早期不叫“人工智能”,它有很多符合那个时代的技术属性的称谓,比如“人机交互、专家系统、模式识别、机器学习深度学习”等等,都是人工智能所覆盖的领域。

2010年以后,以机器学习为代表的一些课题发展跟之前有什么不一样呢?可以发现,随着大数据的发展,越来越多的领域产生了分布化的大数据,这些数据可以训练算法模型。此外,FPGA、GPU甚至未来专用芯片的发展,也使得低成本的底层计算力成为可能。

blob.png

在目前人工智能领域的基本架构中,底层是基础设施,包括数据、训练模型。中间是技术层,有算法以及各种框架,上层有在不同细分领域应用的解决方案。这个组成构成了目前人工智能的产业链。

blob.png

blob.png

从地理分布图可以看到,全球百分之六七十的项目都在欧美。从全球的AI项目成立的时间来看,大部分欧美的AI项目,成立在2013年、2014年。中国在2014年、2015年的时候,也有一批AI的天使期项目创建起来。从推断上来看,中国比美国整体的AI发展,应该慢半年到一年的时间,而其中的一些明星项目,那个时候都还不叫人工智能项目。

blob.png

1  2  3  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

X
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: