侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
当前位置:

OFweek智能硬件网

人工智能

正文

人工智能时代最纠结的三个问题

导读: 随着人工智能时代到来,做芯片的兄弟们心中往往有三大疑问。

随着人工智能时代到来,做芯片的兄弟们心中往往有三大疑问:

·IC 这个行业在人工智能时代到底会怎样?

·IC Design这个工作是否会被人工智能取代?

·我们到底要不要转码农?

这篇文章就和大家探讨这三个问题,也欢迎大家在后台和我们继续探讨。

1.人工智能时代,IC到底怎么样?

目前的行业景气程度可以说是人工智能相关行业非常热门,而半导体行业除了中国以外都是不温不火;那么,IC designer这个行当在人工智能时代到底怎么样呢?

“人工智能时代”要从一个更宏观的角度去考虑。人工智能是不是只是深度学习算法的革命?是不是只是码农的工作?我认为,并不是这样。所谓的“人工智能”,本质上是要让机器更加自动化,所以说“人工智能时代”更好的表达是“人工智能机器时代”。在未来,智能机器可以是有形的,也可以是无形的;例如,物联网的智能交通灯控制系统,在各个角落铺开海量传感器随时监控各条道路的交通流量,汇总信息到云端服务器,经过人工智能算法计算后智能调整每个交通灯的红绿灯时间。这一整个系统就符合智能机器的定义,但是这个机器的很多部分是无形的。我们即将进入的的人工智能机器时代,就会有许多这样规模庞大而又神龙见首不见尾的机器来改善我们的生活。既然是做机器,那么就不会仅仅是CS人的事情,而是做EE的同学们也将会有很大的贡献。一个智能机器,如果将其与人体相类比的话,会需要以下部分:

*大脑:核心处理器芯片,负责执行算法。深度学习中使用的计算芯片和通常的CPU甚至GPU都有很大不同,因此需要重新设计,这也是处理器领域的一个新机遇。Google推出了TPU,Nvidia即将推出开源的DLA,Amazon和微软都在使用FPGA加速云计算,而在终端边缘计算如何设计效率最高的芯片目前还没有定论,目前和未来几年内可以说是深度学习相关处理器芯片发展的黄金时期。

*五官:传感器芯片,负责从环境中感知信息。海量的物联网节点需要的传感器根据不同的感应信号和功耗、灵敏度需求会有一个巨量的长尾市场,“长尾”的意思就是不同的品类都有属于自己的小市场,而不会有一款通用的传感器来吃下整个市场。

*神经:无线连接芯片,负责把传感器的信号传回云端。无线连接需要做到低功耗,目前的IoT无线连接技术在人体植入芯片等地方还无法达到要求,所以还有许多路要走,同时也会出现许多新的公司和新的技术,为射频市场带来新的活力。

由此可见,智能机器离不开IC,而且随着机器的进化,IC也会随之进化,IC这一行并不会缺活干。随着机器用途、种类的越来越多,IC的需求也会大量增长。我们不妨回顾一下,之前的IC和机器发展之间的关系。在上世纪80年代到本世纪初,半导体领域的强劲增长来源于个人电脑PC的普及;在本世纪初随着互联网泡沫破灭,半导体行业萎靡了几年,但是之后随着智能手机的普及,半导体行业再次恢复了强劲增长。PC,智能手机等都是典型的新机器;而下一代智能机器则会比PC和智能手机的市场量远远要大,因此对于半导体集成电路市场的驱动力要远远大于之前的两波增长。

人工智能时代最纠结的三个问题

现在的关键就在于,智能机器时代什么时候到来了。孙正义在前两天2017软银世界大会的演讲中表示“信息革命的新世界正在到来,连睡觉都觉得浪费”,“在20年内连接1万亿个节点的物联网就会实现,这些海量数据将会促使超级人工智能诞生,到达技术奇点”,然而,他同时也表示这个技术奇点到来的时间估计“可能会有数十年的偏差”,因此准备在IC领域继续奋战的兄弟们也要做好持久战的心理准备。

人工智能时代最纠结的三个问题

人工智能时代最纠结的三个问题

孙正义表示由物联网驱动的人工智能很快会到达技术奇点

总结:在机器革新时代,芯片作为机器的核心部分,一定也会迎来很大的增长。

1  2  3  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,除OFweek官方账号外,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

X
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: