侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
订阅
纠错
加入自媒体

优化AI芯片能效 Thinker团队提供新思路

目前,AI对硬件的计算要求越来越高,这主要在神经网络研发上压缩与简化则是一个学术界与工程界都在研究讨论的重要问题。目前的深度神经网络普遍较大,无论是在云端还是在终端,都会影响网络速度,增大功耗。

前不久,清华大学微纳电子系Thinker团队在计算结构上设计了Thinker系列AI计算芯片,并且还受到学术界和工业界的广泛关注。Thinker团队此次研究成果,从存储优化和软硬件协同设计的角度大幅提升了芯片能量效率,给AI计算芯片的架构演进提供了新思路。

据了解,在这次AI计算芯片的存储优化新方法中,刷新了神经网络加速框架,而且可以得到两个优化方向,其一是减少数据生存时间,其二就是增大数据维持时间。其次,还提出神经网络分层的混合计算模式,根据芯片参数及DNN网络参数,对网络的每一层分配一个最优的计算模式。

但是,相比于传统的采用SRAM的AI计算芯片,使用RANA框架的基于eDRAM的计算芯片在面积开销相同的情况下可以减少41.7%的片外访存和66.2%的系统能耗,使AI计算系统的能量效率获得大幅提高。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    智能硬件 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号