侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
订阅
纠错
加入自媒体

英特尔联合百度,共同开发Nervana神经网络训练处理器

2019-07-04 09:17
美通社
关注

北京2019年7月3日,在今天举行的百度AI开发者大会上,英特尔公司副总裁兼人工智能产品事业部总经理Naveen Rao宣布,英特尔正与百度合作开发英特尔® Nervana神经网络训练处理器(NNP-T)。这一合作包括全新定制化加速器,以实现极速训练深度学习模型的目的。

英特尔公司副总裁兼人工智能产品事业部总经理Naveen Rao发表演讲

Naveen Rao表示:“未来几年,AI模型的复杂性以及对大规模深度学习计算的需求将爆发式增长。英特尔和百度将延续双方十多年的合作并聚焦于联合设计和开发全新的硬件以及配套软件,从而向‘AI 2.0’的新疆界不断迈进。”

AI并非单一的工作负载,而是一种广泛的、能够强化所有应用性能的强大能力,无论这些应用是运行在手机上还是大规模数据中心内。然而,手机、数据中心以及两者间的所有设施都对性能和功耗有着不同的要求,因此单一的AI硬件无法满足一切需求。英特尔在人工智能方面提供优越的硬件选择,并通过软件来最大化释放硬件的性能,从而帮助客户无论数据多么复杂或位于哪里都可以自如运行AI应用。此次NNP-T是一类全新开发的高效深度学习系统硬件, 能够加速大规模的分散训练。与百度的密切合作能够确保英特尔开发部门始终紧跟客户对训练硬件的最新需求。

从2016年起,英特尔便一直针对英特尔®至强®可扩展处理器优化百度飞桨(PaddlePaddle*)深度学习框架。如今,通过为百度飞桨优化NNP-T,双方能够为数据科学家提供更多的硬件选择。

与此同时,英特尔还通过更多技术来进一步增强这些AI解决方案的性能。例如,凭借英特尔傲腾数据中心级持久内存所提供的更高内存性能,百度能够通过其Feed Stream *(信息流)服务向数百万用户提供个性化移动内容,并通过百度AI推荐引擎获得更高效的客户体验。

此外,鉴于数据安全对于用户极其重要,英特尔还与百度共同致力于打造基于英特尔软件保护扩展 (SGX) 技术的MesaTEE*  -- 内存安全功能即服务(FaaS)计算框架。 

更多内容:英特尔人工智能|CPU或GPU之外:企业级规模的人工智能为什么需要更全面的方法  (Naveen Rao署名文章)| 百度AI开发者大会上的英特尔人工智能 : AI 摄像头, 基于FPGA的工作负载加速及服务,以及优化深度学习的英特尔至强可扩展处理器

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    智能硬件 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号