为下一代智能PC优化,莱迪思怎么将网络边缘AI融入FPGA设计
文︱郭紫文
图︱莱迪思
据ABI Research预计,截至2024年,设备端的AI推理功能将覆盖近60%的设备。网络边缘计算正迅速掀起热潮,越来越多新的应用延伸至边缘。近日,莱迪思(Lattice)发布了全新的针对客户端计算设备的低功耗AI/ML应用路线图,全面更新了感知和瞬时启动、电池寿命、隐私保护及视频会议体验等。此外,莱迪思还发布了最新一代Lattice sensAI解决方案集合。
本次推出的莱迪思sensAI 4.1将增加支持CertusPro-NX器件,并在此基础上支持相应声音和视觉机器学习开发板、CNN Plus加速器以及相对应的sensAI Studio。同时,莱迪思新增了人员侦测、注意力追踪和目标分类等参考设计,为智能家居、智能城市、智能工厂、智能汽车等领域提供定制化设计服务。
将网络边缘AI融入FPGA设计
“边缘端对功耗的敏感度和尺寸大小有着较为严格的要求,而小封装和低功耗恰好是Lattice FPGA的核心竞争力。”莱迪思半导体亚太区资深市场开发经理林国松表示,莱迪思将网络边缘AI融入FPGA的设计,配合AI技术为用户提供更优质的使用体验。
在结合了AI技术之后,莱迪思的FPGA芯片的功耗可以控制在一毫瓦至一瓦范围之内,与ASIC相比也毫不逊色。其次,该系列芯片承袭了FPGA本身的优势特点,包括灵活的计算资源和性能可拓展特性,能够实现预处理、后处理、图像处理、滤波等功能,还能进行性能扩展。此外,莱迪思FPGA内嵌安全功能区域,为多种使用场景提供更高的安全性能。林国松表示,AI算法灵活多变,不断更新迭代,较之ASIC,FPGA具备硬件可编程、低成本、低功耗等优势,能够更快适应快速变化的机器学习算法。
突破硬件与算法优化瓶颈
“优化的算法如果纯粹只是停留在软件上,或者大型CPU的计算方法上,对于实际落地,尤其边缘端部署,是一个比较大的挑战。”在林国松看来,AI技术持续创新,产生了新的实现方式,从而需要更快的硬件来实现,硬件优化和算法优化的结合才是企业的最佳选择。
莱迪思硬件优化方案通过Lattice Radiant与DIAMOND结合,产生FPGA位流。同时,将神经网络模型、训练数据集、训练脚本等通过Caffe训练之后,经由神经网络编译器量化,最终将量化的权重和指令与FPGA位流相结合。软件优化方案则专门提供了PROPEL软件,为方便初学者提供更易上手的C代码指令控制。
据林国松介绍,莱迪思将能够提供的网络预安装到Container中,客户只需将Container移植到边缘端执行相应训练,便可以对硬件与算法进行优化设计,大幅节省了配置的精力和时间。
以智能感知优势切入PC产业链
“下一代PC将朝着智能感知、协作能力和轻薄化方向发展。”林国松表示,莱迪思sensAI凭借智能感知优势,为智能PC提供用户检测、注意力追踪、旁观者检测以及面部取景等功能,能够将电池寿命延长28%,更好地保护用户隐私数据,提升协作式会议效率。
莱迪思sensAI方案符合道德和合理的AI设计考量,能够直接在硬件上处理人脸图像等信息,而不会上传给电脑,从而保护用户隐私安全。面向智能PC领域,莱迪思产品能够实现实时在线感知,包括瞬时启动、感知用户、声音和手势控制、视频音频体验,以及给用户提供身体健康情况通知等。
莱迪思拥有丰富的FPGA芯片设计经验,致力于将方案的体验感做到最佳,同时持续探索更多场景延伸。过去四年FPGA总出货量超过10亿颗。就出货量而言,莱迪思已然做到了全球第一的水平。未来,莱迪思将与OEM以及其他芯片厂商、操作系统厂商紧密合作,保证客户的产品能够迅速落地,走向市场。
最新活动更多
-
精彩回顾立即查看>> 2024工程师系列—工业电子技术在线会议
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 【在线会议】多物理场仿真助跑新能源汽车
-
精彩回顾立即查看>> 【限时免费下载】TE暖通空调系统高效可靠的组件解决方案
-
精彩回顾立即查看>> 2024德州仪器嵌入式技术创新发展研讨会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论