AI计算:GPU上岸,IPU崛起
两种芯片势能英伟达与Graphcore的较量
Graphcore成立于2016年,是一家专注于机器智能、同时也代表着全新计算负载的芯片制造公司,其包括IPU在内的产品研发擅长大规模并行计算、稀疏的数据结构、低精度计算、数据参数复用以及静态图结构。
英伟达的潜在竞争对手Graphcore的第二代IPU在多个主流模型上的表现优于A100 GPU,两者将在超大规模数据中心正面竞争。
未来,IPU可能在一些新兴的AI应用中展现出更大的优势。
第二代IPU相比第一代IPU有两倍峰值算力的提升,在典型的CV还有NLP的模型中,第二代IPU相比第一代IPU则展现出了平均8倍的性能提升。
如果对比英伟达基于8个最新A100 GPU的DGX-A100,Graphcore 8个M2000组成的系统的FP32算力是DGX-A100的12倍,AI计算是3倍,AI存储是10倍。
AI计算未来有三种计算平台
第一种平台是CPU,它还会持续存在,因为一些业务在CPU上的表现依然不错;
第二种平台是GPU,它还会持续发展,会有适合GPU的应用场景。
第三种平台是就是Graphcore的IPU。
IPU旨在帮助创新者在AI应用上实现新的突破,帮助用户应对当前在CPU、GPU上表现不太好的任务或者阻碍大家创新的场景。”卢涛副总指出。
目前GPU在全球已是大规模的商用部署,其次是Google的TPU通过内部应用及TensorFlow的生态占第二大规模,IPU处于第三,是量产的、部署的平台。
与此同时,Graphcore也在中国积极组建其创新社区。Graphcore已在微信、知乎、微博和GitHub开通了官方频道,旨在与开发者、创新者、研究者更好地交流和互动。
关于未来的AI计算领域,未来会是 “CPU、GPU、IPU并行” 的时代,GPU或部分CPU专注于业务场景的实现和落地,而IPU专为AI创新者带来更多突破。
构建生态链条IPU仍在路上
IPU想要在AI计算中拥有挑战GPU地位的资格,除了在性能和价格上面证明自己的优势之外,还需要在为机器学习框架提供的软件栈上提供更多选择,获得主流AI算法厂商的支持。
在标准生态、操作系统上也需要有广泛的支持,对于开发者有更方便的开发工具和社区内容的支持,才能从实际应用中壮大IPU的开发生态。
一个AI芯片从产出到大规模应用必须要经过一系列的中间环节,包括像上面提到的支持主流算法框架的软件库、工具链、用户生态等等,打通这样一条链条都会面临一个巨大挑战。
目前申请使用Graphcore IPU开发者云的主要是商业用户和高校,个人研究者比较少。IPU开发者云支持当前一些最先进和最复杂的AI算法模型的训练和推理。
和本世纪初的GPU市场一样,在AI芯片市场步入弱编程阶段,如今百家争鸣的局面预计也将很快结束,市场在一轮厮杀后会剩下为数不多的参与者做最终对决。
现在要看的是在发展初期的逐一击破阶段,Graphcore是否真有定义并主控第三类芯片的魄力了。
不过从创新的架构到芯片再到成为革命性的产品,Graphcore从芯片到落地之间的距离,需要易用的软件和丰富的工具来支持,特别是对软件生态依赖程度比较到的云端芯片市场。
结尾:
IPU不是GPU,这个可能是最大的一个挑战,但同时也是最大的一个机会。IPU并不是GPU的替代品或者类似品,所以不能拿GPU的逻辑来套用IPU的逻辑。
近两年,AI 芯片出现了各种品类的井喷,可以预计未来IPU在各类AI应用中将具有更大的优势。
最新活动更多
-
精彩回顾立即查看>> 2024工程师系列—工业电子技术在线会议
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 【在线会议】多物理场仿真助跑新能源汽车
-
精彩回顾立即查看>> 【限时免费下载】TE暖通空调系统高效可靠的组件解决方案
-
精彩回顾立即查看>> 2024德州仪器嵌入式技术创新发展研讨会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论