侵权投诉
技术:
GPU/CPU 传感器 基础元器件 网络通信 显示 交互技术 电源管理 材料 操作系统 APP 云技术 大数据 人工智能 制造 其它
应用:
可穿戴设备 智能家居 VR/AR 机器人 无人机 手机数码 汽车 平衡车/自行车 医疗健康 运动设备 美颜塑身 早教/玩具 安防监控 智能照明 其它
订阅
纠错
加入自媒体

AI计算:GPU上岸,IPU崛起

2020-10-19 16:25
Ai芯天下
关注

前言:

AI近些年的大火,直接促进了CPU和GPU的发展,而英伟达的GPU真正借此迅速成为AI市场的主流产品之一,其势头甚至盖过了CPU。

AI应用需要专门的处理器,而IPU正是这样的处理器。目前,AI在各行各业均得到广泛应用,IPU可以基于自身优势为世界的智能化进程增添不竭动力。

AI芯天下丨趋势丨向AI求生的路上,GPU已上岸,IPU在崛起

英伟达专注的GPU优势逐渐缩小

从专注图像渲染崛起的英伟达的GPU,走的也是相当于ASIC的技术路线,但随着游戏、视频渲染以及AI加速需要的出现,英伟达的GPU也在向着GPGPU的方向演进。

当硬件更多的需要与软件生态挂钩时,市场大多数参与者便会倒下。在竞争清理过后,GPU形成了如今的双寡头市场,并且步入相当成熟的阶段。

ASIC本身的成本、灵活性缺失,以及应用范围很窄的特点,都导致它无法采用最先进制程: 即便它们具备性能和能效优势,一旦无法采用最先进制程,则这一优势也将不再明显。 

为保持其在GPU领域的寡头地位,使得英伟达必须一直保持先进的制程工艺,保持其通用性,但是要牺牲一定的效能优势。

相比于来自类GPU的竞争,英伟达不应该忽视Graphcore的IPU,特别是Graphcore一直都在强调其是为AI而生,面向的应用也是CPU、GPU不那么擅长的AI应用。

AI芯天下丨趋势丨向AI求生的路上,GPU已上岸,IPU在崛起

利用AI计算打侧面竞争战

不管CPU还是GPU都无法从根本上解决AI问题,因为AI是一个面向计算图的任务、与CPU的标量计算和GPU的矢量计算区别很大。

而另一边的IPU,则为AI计算提供了全新的技术架构,同时将训练和推理合二为一,兼具处理二者工作的能力。

作为标准的神经网络处理芯片,IPU可以支持多种神经网络模型,因其具备数以千计到数百万计的顶点数量,远远超过GPU的顶点规模,可以进行更高潜力的并行计算工作。

AI芯天下丨趋势丨向AI求生的路上,GPU已上岸,IPU在崛起

计算加上数据的突破可以让IPU在原生稀疏计算中展现出领先IPU 10-50倍的性能优势,到了数据稀疏以及动态稀疏时,IPU就有了比GPU越来越显著的优势。

此外,如果是在IPU更擅长的分组卷积内核中,组维度越少,IPU的性能优势越明显,总体而言,有4-100倍的吞吐量提升。

5G网络切片和资源管理中需要用到的强化学习,用IPU训练吞吐量也能够提升最多13倍。

AI芯天下丨趋势丨向AI求生的路上,GPU已上岸,IPU在崛起

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号